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Abstract
In this paper we study the ground state ferromagnetism in a doubly orbitally
degenerate Hubbard model generalized by taking into account correlated
hopping and inter-atomic exchange interaction. We find that an important role
in the stabilization of ferromagnetism is played by the intra- and inter-atomic
exchange interactions as well as correlated hopping, which allows us to describe
the metallic paramagnetic–ferromagnetic transition with a realistic relationship
between the above-mentioned exchange interactions. The expression for
magnetization and the criterion of ferromagnetic ground state stability are
derived. The obtained results are compared with some experimental data for
magnetic materials.

1. Introduction

The Stoner–Wohlfarth [1, 2] theory has been used widely for the description of band electron
magnetism. This theory of itinerant magnetism is based on the mean-field treatment of the
exchange interaction among band electrons. Calculations in this model depend essentially on
the shape and peculiarities of the density of states; in particular, it is known that the incomplete
ferromagnetism in this model is absent if the density of states is rectangular [2].

In the papers [3,4] the generalizations of this theory for the single-band case were carried
out by taking into consideration within a Hubbard-like tight-binding Hamiltonian certain matrix
elements of electron–electron interaction which provide new mechanisms of ferromagnetism
stabilization in metallic ferromagnets. The main result of these works is that the inter-atomic
exchange interaction plays an essential role for the appearance of a ferromagnetic state with
partial polarization. It has also been shown [5] that correlated hopping enhances the tendency
to ferromagnetism in the case of a less than half-filled band versus a more than half-filled band.
Moreover, due to an additional mechanism of correlated hopping the opposite behaviour can
be realized [4] (in this connection see also section 2).
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However, the presence of band degeneracy is essential for itinerant ferromagnetism. This
view was originated in the work of Slater [6] and van Vleck [7], where it was argued that
the presence of orbital degeneracy and Hund’s rule exchange interaction leads to so-called
‘atomic ferromagnetism’; in such a situation translational motion of electrons forces the spins
of electrons on nearest-neighbour atoms to align in parallel. This is confirmed by the fact
that ferromagnetism in metals has only been found in systems that have atoms with valence
electrons in degenerate orbitals that can support an atomic magnetic moment through Hund’s
rule. Therefore, the extension of the theory proposed in works [3, 4] for systems with orbital
degeneracy is a relevant and important task, to which this paper is devoted.

We start from the following generalization [8] of the Hubbard model for an orbitally
degenerate band taking into account the matrix element of electron–electron interaction, which
describes intersite hoppings of electrons (correlated hopping), and inter-atomic exchange:

H = −µ
∑
iγ σ

a+
iγ σ aiγ σ +

∑
ijγ σ

′
a+
iγ σ

(
tij +

∑
kγ ′

J (iγ kγ ′jγ kγ ′)nkγ ′

)
ajγσ

+U
∑
iγ

niγ↑niγ↓ + U ′ ∑
iσ

niασ niβσ̄ + (U ′ − J0)
∑
iσ

niασ niβσ

+ J0

∑
iσ

a+
iασ a

+
iβσ̄ aiασ̄ aiβσ +

J

2

∑
ijγ σσ ′

′
a+
iγ σ a

+
jγ σ ′aiγ σ ′ajγσ (1.1)

where µ is the chemical potential, a+
iγ σ , aiγ σ are the creation and destruction operators of an

electron of spin σ (σ =↑,↓; σ̄ denotes spin projection which is opposite to σ ) on site i and
in orbital γ (γ = α, β denotes two possible orbital states), niγ σ = a+

iγ σ aiγ σ is the number
operator of electrons of spin σ and in orbital γ on site i, niγ = niγ↑ + niγ↓; tij is the hopping
integral of an electron from orbital γ of site j to orbital γ of site i (we neglect the electron
hoppings between orbitals α and β). In real systems electron hoppings between different
orbitals can exist; in addition the hopping integrals are anisotropic for eg orbitals. However,
we assume for simplicity t

αβ

ij = tij δαβ . This assumption is a conventional approach in this
field (for example, see [8–13] and references therein), and simplifies considerably the analysis
of properties of the model under consideration.

J (iγ kγ ′jγ kγ ′) =
∫ ∫

ϕ∗
γ (r − Ri )ϕγ (r − Rj )

e2

|r − r′| |ϕγ ′(r′ − Rk)|2 dr dr′ (1.2)

(ϕγ is the Wannier function), U is the intra-atomic Coulomb repulsion of two electrons of the
opposite spins at the same orbital (we assume that it has the same value for orbitals α and β),
U ′ is the intra-atomic Coulomb repulsion of two electrons of the opposite spins at the different
orbitals, J0 is the intra-atomic exchange interaction energy which stabilizes the Hund states
forming the atomic magnetic moments and J is the inter-atomic exchange interaction. The
primes at sums in equation (1.1) signify that i 	= j .

In Hamiltonian (1.1) we rewrite the sum
∑′

ijkγ γ ′σ J (iγ kγ ′jγ kγ ′)a+
iγ σ nkγ ′ajγσ in the

form∑
ijγ σ

′ (
J (iγ iγjγ iγ )a+

iγ σ ajγ σ niγ σ̄ + h.c.
)

+
∑
ijγ σ

′ (
J (iγ iγ̄ jγ iγ̄ )a+

iγ σ ajγ σ niγ̄ + h.c.
)

+
∑

ijγ γ ′σ

′ ∑
k 	=i
k 	=j

J (iγ kγ ′jγ kγ ′)a+
iγ σ ajγ σ nkγ ′ (1.3)

(γ̄ = β ifγ = α, and γ̄ = α whenγ = β). The first and second sums of equation (1.3) describe
the hoppings of electrons which are correlated by electron occupation of sites involved in the
hopping process. The third sum describes the hoppings of an electron between states |iγ σ 〉 and
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|jγ σ 〉 which are dependent on the occupation number nk of other sites (k 	= i, k 	= j ). Let us
take into account the influence of occupation of these sites in the Hartree–Fock approximation:∑

ijγ γ ′σ

′ ∑
k 	=i
k 	=j

J (iγ kγ ′jγ kγ ′)a+
iγ σ ajγ σ nkγ ′ � n

∑
ijγ σ

′
T (ij)a+

iγ σ ajγ σ (1.4)

where n = 〈niα + niβ〉 is the average number of electrons per site,

T (ij) =
∑
k 	=i
k 	=j

J (iγ kγ ′jγ kγ ′) (1.5)

we have supposed that J (iγ kαjγ kα) = J (iγ kβjγ kβ) and T (ij) have the same value for
orbitals α and β. Assuming that states α and β are equivalent, denote

J (iγ iγ̄ jγ iγ̄ ) = t ′αα(ij) = t ′ββ(ij) = t ′ij (1.6)

J (iγ iγjγ iγ ) = t ′′αα(ij) = t ′′ββ(ij) = t ′′ij . (1.7)

So we can rewrite Hamiltonian (1.1) in the following form:

H = −µ
∑
iγ σ

a+
iγ σ aiγ σ +

∑
ijγ σ

′
tij (n)a

+
iγ σ ajγ σ +

∑
ijγ σ

′
(t ′ij a

+
iγ σ ajγ σ niγ̄ + h.c.)

+
∑
ijγ σ

′
(t ′′ij a

+
iγ σ ajγ σ niγ σ̄ + h.c.) + U

∑
iγ

niγ↑niγ↓ + U ′ ∑
iσ

niασ niβσ̄

+(U ′ − J0)
∑
iσ

niασ niβσ + J0

∑
iσ

a+
iασ a

+
iβσ̄ aiασ̄ aiβσ +

J

2

∑
ijγ σσ ′

′
a+
iγ σ a

+
jγ σ ′aiγ σ ′ajγσ

(1.8)

with the effective hopping integral tij (n) = tij + nT (ij) being concentration dependent in
consequence of taking into account the correlated hopping T (ij). To characterize the value of
correlated hopping we use the dimensionless parameters τ (defined by tij (n) = tij (1 − nτ)),

τ ′ = t ′ ij
|tij | and τ2 = t ′′ ij

|tij | .
The typical range of the parameters in Hamiltonian (1.8) is U � U ′ > J0 > tij >

t ′ij ∼ t ′′ij � T (ij) > J (see [14–17]). However, different materials can be characterized
by completely different values of these parameters. Realistic values for the transition metals
and their compounds are U ≈ 2–5 eV, J0 ≈ 0.5–1 eV, tij ≈ 0.1–0.3 eV and J ≈ 0.02–
0.03 eV [15–17].

Within the mean-field theory in the Fourier representation we obtain for the single-particle
Green function

〈〈apγσ |a+
p′γ σ 〉〉k = 1

2π

1

E − Eγσ (k)
(1.9)

where the single-particle energy spectrum is

Eγσ (k) = −µγσ + tk(nγ σ) (1.10)

with the shifted chemical potential

µγσ = µ − β ′
γ − β ′′

γ σ − nγ σ̄U − nγ̄ σ̄U
′ − nγ̄ σ (U

′ − J0) + zJnγσ (1.11)

here the shifts of subband centres are

β ′
γ = 2

N

∑
ijσ

t ′(ij)〈a+
iγ̄ σ ajγ̄ σ 〉 β ′′

γ σ = 2

N

∑
ij

t ′′(ij)〈a+
iγ σ̄ ajγ σ̄ 〉 (1.12)
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(N is the number of lattice sites). The hopping integral, which is spin and concentration
dependent, reads as

tk(nγ σ) = tk

(
1 − τn − 2τ ′nγ̄ − 2τ2nγ σ̄ − zJ

w

∑
σ ′

〈a+
iγ σ ′ajγσ ′ 〉

)
. (1.13)

tk is the Fourier transform of the hopping integral tij , 2w = 2z|tij | is the bandwidth with z

being the number of nearest neighbours to a site, nγσ = 〈niγ σ 〉 and nγ = 〈niγ 〉.
The dependence of effective hopping integral on electron concentration and magnetization

and the presence of a spin-dependent shift of the subband centre are the essential distinctions
of the single-particle energy spectrum of the model described by Hamiltonian (1.8) from the
spectrum of the two-band Hubbard models.

The mean-field approach is often criticized for its simplism. Unfortunately, the treatment
of this model with so many parameters into the framework of other methods (for example,
dynamical mean-field theory or exact diagonalization) is very complicated. At the same time
it is interesting and important to find how the orbital degeneracy with intra-atomic Hund’s
rule coupling and ‘off-diagonal’ matrix elements of electron–electron interaction (correlated
hopping and inter-atomic direct exchange interaction) in the aggregate shows itself in the
metallic ferromagnetism problem. Therefore, our consideration of the metallic ferromagnetism
problem is the development of the theory following the ideas proposed in papers [3] (which
are based on the mean-field treatment of electron–electron interactions). We assume that the
mean-field approximation can give the qualitatively correct physical picture in the case of
the intermediate electron–electron correlations. This approach leads to results which agree
qualitatively with those of the papers (see e.g. [9–13]), where the authors used other methods
to treat electron correlations in less complicated Hamiltonians, and are in agreement with
experimental data. In particular, the approach we use allows us to avoid the problem of
Curie temperature overestimation, and to explain the peculiarities of ferromagnetic properties
(electron–hole asymmetry of the concentration dependence of magnetization and of Curie
temperature) for some transition metals and their compounds (in this connection see [18], and
also section 2).

2. Results and discussion

The concentration of electrons with spin σ on orbital γ is

nγσ =
∫ +∞

−∞
ρ(ε)f (Eγσ (ε)) dε. (2.1)

Here ρ(ε) is the density of states, f (ε) is the Fermi distribution function andEγσ (ε) is obtained
from the respective formula (1.10) substituting tk →ε.

In the case of zero temperature and rectangular density of states we obtain

nγσ = εγσ + w

2w
(2.2)

where the value εγσ is the solution of the equation Eγσ (ε) = 0. One can obtain that εγσ = µγσ

αγσ
,

where αγσ = 1 − τn − 2τ ′nγ̄ − 2τ2nγ σ̄ − zJ
w

∑
σ ′ nγσ ′(1 − nγσ ′).

The shifts of subband centres are

β ′
γ = −2τ ′w

∑
σ

nγ̄ σ (nγ̄ σ − 1) β ′′
γ σ = −2τ2wnγ σ̄ (nγ σ̄ − 1). (2.3)

From equation (2.2) we derive the formula for magnetization (m < n):

m =
∑
γ

(nγ↑ − nγ↓) = ± 2√
zJ

√
(1 + n − n2/4)zJ + (U + J0) + [2(nτ1 − 1) + (4 − n)τ2]w

(2.4)
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where τ1 = τ + τ ′; here we have assumed that the distribution of electrons between orbitals is
uniform (nασ = nβσ ). Note that magnetization (2.4) does not depend on the parameter of intra-
atomic Coulomb interaction U ′. This parameter leads to chemical potential renormalization,
which is independent of magnetic moment (this can be seen also from the expression for ground
state energy). Similarly, in the work [9] it has been argued that this parameter does not play a
decisive role in metallic ferromagnetism of the transition metal compounds.

From equation (2.4) we obtain the condition of spin polarization

U + J0

2w
+

zJ

8w

[
4 + n(4 − n) − m2

]
+ nτ1 +

1

2
τ2(4 − n) > 1. (2.5)

For the case of J = 0 from equation (2.5) we obtain a generalization of the Stoner criterion
which takes into account the orbital degeneracy and correlated hopping

(U + J0)ρ(εF ) > 1 − nτ1 − 1
2τ2(4 − n). (2.6)

Note that equations (2.4)–(2.6) coincide with the expressions which can be found from the
ground state energy calculations.

Analysis of the expressions for ground state energy and magnetization (2.4) shows that
for the values of inter-atomic exchange interaction J > 0 at the point of the transition from a
paramagnetic metal to a ferromagnetic metal the magnetization changes continuously, and for
J = 0 it has a jump: namely, in the former case the transition from a paramagnetic state to a
partially polarized ferromagnetic state occurs; in the latter the transition from a paramagnetic
state to a fully polarized ferromagnetic state (saturated ferromagnetic state, m = n) is obtained.
Similar results have been obtained in a single-band model [4,5,19]. Thus, taking into account
the inter-atomic exchange interaction allows us to obtain a partially polarized ferromagnetic
state in the two-band Hubbard model with symmetrical density of states; the partially polarized
ferromagnetic state has been obtained by the authors of [10], using the special feature of the
density of states.

The magnetization defined by equation (2.4) is plotted in figure 1 as a function of electron
concentration n at different values J0/w. These dependences qualitatively agree with results
of [10] obtained by use of the Gutzwiller variational function method. From figure 1 one can
see that nature of the ground state of the system depends strongly on the values of system
parameters; small changes of J0 can lead to the transition from a paramagnetic state to a
ferromagnetic one at some values of electron concentration and energy parameters (this result
agrees with the results of works [11, 12]); note that at some values of parameters the state of
the system can be fully polarized. The transition to the ferromagnetic state is also possible
with the increase of n. A similar transition with the increase of electron concentration has
been found by the authors of [20].

Taking into account correlated hopping leads to the appearance of a peculiar kinetic
mechanism of ferromagnetic ordering stabilization. This mechanism is caused by the presence
of a spin-dependent shift of the subband centres, being the consequence of correlated hopping
(which is similar to the shift of subband centres in consequence of inter-atomic direct exchange
interaction). The influence of correlated hopping on the behaviour of the system is illustrated
in figure 2. In distinction from the two-band Hubbard model there is an asymmetry of the
cases n < 2 and n > 2. One can see also that both mechanisms of correlated hopping
favour ferromagnetism but their concentration dependences are different: if τ2 > τ1 then
the systems with the electron concentration n < 2 are more favourable to ferromagnetism
than the systems with n > 2, and vice versa. With the increase of parameter τ1 the region
of ferromagnetic ordering moves towards larger values of electron concentration n, and with
increasing τ2 to smaller values of n. Note that taking into account the correlated hopping
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Figure 1. The magnetization m as a function of n at U/w = 1.5 and τ1 = τ2 = 0, zJ/w = 0.05.
The upper curve corresponds to J0/w = 0.25, the middle curve corresponds to J0/w = 0.2 and
the lower one corresponds to J0/w = 0.16.

Figure 2. The magnetization m as a function of n at U/w = 1.5, zJ/w = 0.05 and J0/w = 0.17.
Curve 1 corresponds to τ1 = τ2 = 0, curve 2 to τ1 = 0, τ2 = 0.015, and curve 3 to τ1 = 0.015,
τ2 = 0.

enriches significantly the set of curves (illustrating the m(n) dependences), which qualitatively
describe the experimental Slater–Pauling curves [21] for ferromagnetic alloys.

In figure 3 the dependences of critical values of J0/w for ferromagnetism stabilization on
electron concentration at different values of zJ/w are plotted. It is important to note that at
zJ = 0 the critical value of J0/w does not depend on the electron concentration. This can be
explained by the following arguments: in the absence of inter-atomic exchange the mechanism
which stabilizes ferromagnetism is a translational motion of electrons which enforces the spins
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Figure 3. The critical values of J0/w as a function of n at U/w = 1, τ2 = 0. Curve 1 corresponds
to zJ/w = 0, τ1 = 0, curves 2 to zJ/w = 0.05, τ1 = 0, curve 3 to zJ/w = 0, τ1 = 0.1, and
curves 4 to zJ/w = 0.05, τ1 = 0.1. The region below the lower line of curves 2 and 4 corresponds
to the paramagnetic ordering of spins, above the upper line to the full polarization of spins and
between the lines to the partial polarization.

of sites involved in the hopping process to align in parallel because of Hund’s rule coupling.
Note also the essential difference of the situation where the system is described by non-
zero values of correlated hopping: since correlated hopping renormalizes the bandwidth and
makes it dependent on the concentration, the behaviour of the critical value of J0/w becomes
asymmetrical relative to half-filling. The increase of zJ/w decreases significantly the critical
value of J0/w (in the same way as the correlated hopping does). The inverse dependence of
critical values of zJ/w and J0/w (which indicates the destabilization of ferromagnetic ordering
at the increase of J0/w) at some electron concentrations has been obtained in work [11] with
use of the exact diagonalization method for the even number of sites in one-dimensional chains,
but that result depends sensitively on the number of lattice sites and the boundary conditions.

Thus, our result shows that both the intra-atomic Hund’s rule coupling and inter-atomic
direct exchange interaction stabilize ferromagnetic ordering in systems with orbital degeneracy.
In the absence of correlated hopping and J (J0) the values of J0 (J ) required for ferromagnetism
are of the same order as the bandwidth. Taking into consideration both intra- and inter-atomic
exchange interactions as well as correlated hopping leads to more realistic critical values of
the mentioned exchange interactions, allowing us to describe real materials. Note also that the
critical values of J0 and J decrease with the increase of Coulomb interaction parameter U . A
qualitatively similar picture has been obtained by the authors of [13].

Figure 4, which is plotted with use of equation (2.4) at U/w = 1.2, zJ/w = 0.012,
J0/w = 0.3, τ1 = 0 and τ2 = 0.14 (these values of the parameters agree with the estimations
mentioned in section 1), reproduces the behaviour of the magnetization observed in the systems
Fe1−xCoxS2 and Co1−xNixS2 with changing electron concentration in the 3d band [22]. In
these crystals the same subsystem of electrons is responsible for both conductivity and localized
magnetic moment formation. The noted compounds have the cubic pyrite structure, so the 3d
band is split into two subbands: a doubly degenerate eg band and a triply degenerate t2g band;
the t2g band is completely filled and the eg band is partially filled (the eg band filling changes
from zero to unity in the compound Fe1−xCoxS2 and from unity to two in the compound
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Figure 4. The magnetization m as a function of n at U/w = 1.2, zJ/w = 0.012, J0/w = 0.3,
τ1 = 0 and τ2 = 0.14. The experimental points for Fe1−xCoxS2 and Co1−xNixS2 are shown.

Co1−xNixS2). One should describe the eg band of these compounds by a doubly orbitally
degenerate model.

The unusual peculiarity of the system Fe1−xCoxS2 is the presence of ferromagnetic
ordering at very small values of electron concentration n = x � 0.05 [22]. Ferromagnetism
in this compound has been studied within a single-band model in [23–25]. The authors of
work [23, 24] have proposed an approximation for the description of Fe1−xCoxS2 in the
non-degenerate Hubbard model with U = ∞ which provides the ferromagnetic solution
even at very small electron concentration (in this connection see also [25]). However, in
accordance with the Kanamori theory [26] at very small n we should obtain the gas limit where
ferromagnetism does not occur. We also suggest that the degeneracy of the eg band is essential
for the description of ferromagnetic ordering in this system. Our results allow us to obtain the
ferromagnetism for small values of electron concentration induced by correlated hopping τ2 in
the presence of the inter-atomic exchange interaction (see figure 4). Thus, we believe that the
correlated hopping mechanism in the presence of the inter-atomic exchange interaction allows
a more natural explanation of the origin of ferromagnetism in the Fe1−xCoxS2 system at very
small x.

3. Conclusions

In this paper we have investigated the ground state ferromagnetism in a doubly orbitally
degenerate Hubbard model generalized by taking into account correlated hopping and inter-
atomic exchange interaction. We have found that intra-atomic Hund’s rule coupling, inter-
atomic direct exchange interaction and correlated hopping act cooperatively, stabilizing
ferromagnetic order in systems with orbital degeneracy. The transition from the paramagnetic
phase to the ferromagnetic one occurs at values of interaction parameters which are of the
same order as the bandwidth, and with density of states without peculiarities. For the values of
inter-atomic exchange interaction J > 0 the transition from a paramagnetic state to a partially
polarized ferromagnetic state occurs, and for J = 0 the transition from a paramagnetic state
to a fully polarized ferromagnetic state (saturated ferromagnetic state) is realized.
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Taking into account the correlated hopping leads to the appearance of the specific
mechanism due to the spin-dependent shift of the subband centres, which stabilizes
ferromagnetic ordering. At values of the correlated hopping parameters τ2 > τ1 in the
system with concentration of electrons n < 2 the situation for ferromagnetic ordering is
more favourable than for the system with n > 2; at τ2 < τ1 the opposite behaviour is found.

The calculated dependence of magnetization on concentration of electrons qualitatively
describes the experimental Slater–Pauling curves for ferromagnetic alloys. At some values
of the model parameters the experimental dependence of magnetization for the systems
Fe1−xCoxS2 and Co1−xNixS2 with change of electron concentration in the eg band is reproduced
theoretically. The correlated hopping mechanism of ferromagnetism stabilization allows us to
explain the ferromagnetism in the systems Fe1−xCoxS2 at small concentrations x � 0.05.
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